No. of Printed Pages: 7

BCS-054

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

04752

June, 2019

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours

Maximum Marks: 100

Note:

- (i) Use of calculator is allowed during examination.
 - (ii) Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5.
- 1. (a) Find the sum of two floating-point numbers $x = 0.6239 \times 10^6$ and $y = 0.5163 \times 10^4$.
 - (b) Find the product of x and y where the value of x and y are given in part (a) of this question.
 - (c) What is 'underflow'? Give an example of multiplication due to which underflow occurs.

Download all NOTES and PAPERS at Stude

3

(d) Write the following system of linear equations in matrix form :

2

4

2

3

3

$$3x + 5y + 8z = 0$$
$$3y + 2z = 7$$

$$2x - 3z = -6$$

(e) Solve the following system of linear equations using the Gauss elimination method:

$$13x - 7y = 2$$
$$5x + 3y = 15$$

(f) Find an interval in which the following equation has a root:

$$2x^2 - 11x + 14 = 0$$

(g) Show two iterations of Newton-Raphson method for finding approximate root of the equation

$$x^2 + x - 6 = 0$$
 starting with $x_0 = 1$.

- (h) Write the notation and formula for the following operators:
 - (i) Central difference operator
 - (ii) Shift operator
 - (iii) Forward difference operator

2

- (j) Define the term interpolation with the help of an example. State the Newton's backward difference formula for interpolation. 2+2
- (k) Construct a difference table for the following data:

		- 8	()	
x	4	ded	8	10
f(x)	doni	15	29	31

- (1) From the Newton's backward difference formula asked in part (j), derive a rule/formula for finding the derivative of a function f(x) at $x = x_0$.
- (m) State trapezoidal rule for finding the approximate value of integral

$$\int_{a}^{b} f(x) dx.$$

Also show it geometrically.

- Define the following terms and give one (\mathbf{n}) example for each of the following in the context of differential equations:
 - (i) Order
 - Degree (ii)
 - (iii) Initial conditions
 - (iv) **Boundary conditions**
- Assuming an 8-decimal digit floating point 2. (a) representation (with 4 digits for mantissa, two digits for excenent and one each for sign of mantissa and exponent), represent the following numbers in normalised floating point form (use chopping, if required).
 - 23563255 (i)
 - -63.27832(ii)
 - (iii) -0.0000235
 - (b) For each of the three numbers in Q.No. 2(a), find the relative error in its normalised floating point representation.
 - (c) Obtain the approximate value of smallest positive root of the equation

$$x^3 + 4x - 12 = 0,$$

by using three iterations of bisection method.

BCS Download all NOTES and PAPERS at Stude

3

(d) Find the Maclaurin's series of $f(x) = e^x$, around x = 0. (Please note $\frac{d}{dx} e^x = e^x$)

Calculate the approximate value of e using first four terms of this series.

10

6

4

3. (a) Solve the following system of linear equations with pivotal condensation Gaussian elimination method:

2x + 3y - z = 1 x - 5y + 7z = 4 3x - y - 3z = 4

(b) Solve the following system of linear equations using Gauss-Jacobi iterative method. Perform only three iterations.

5x - 7y + 3z = 15 x - 5x - 2z = 43x + 2y + z = 2

Take initial estimates as x = 0, y = 0 and z = 0.

- (c) Define the following with the help of an example:
 - (i) Ill conditioned problem
 - (ii) Rounding off errors
 - (iii) Algebraic equations
 - (iv) Transcendental equations

BCS-054 Ownload all NOTES and PAPERS at Stude

4. (a) Find the Newton's forward-difference interpolating polynomial for the following data:

х	1	2	3	4	5	6
f(x)	12	22	44	84	148	242

Hence, obtain the value of f(x) at x = 1.5 and x = 2.5.

(b) Estimate the missing term (represented by "?") in the following data, if it represents a valid interpolating polynomial of degree 3.

x	1	2	3	4	5
f(x)	5	24	?	128	225

(c) Given the following data for interpolation:

x	0	1	5	15	
f(x)	20	60	120	200	

To find the value of f(x) at x = 2, which of the following methods will be used by you?

- Bessel's interpolation formula
- Newton's FD formula
- Lagrange's interpolation method
 Give reasons in support of your answer.

3

8

- (d) What is inverse interpolation? Explain with the help of an example.
- **5.** Attempt any *two* of the following parts: $2\times10=20$
 - (a) Find the approximate value of the integral

$$I = \int_{0.2}^{1.0} \frac{dx}{\sqrt{1 + x^2}}$$

by Simpson's $\frac{1}{3}$ rd rule dividing the interval [0.2, 1.0] to 4 equal sub-intervals. Compute up to four places of decimal only.

(b) Find the value of f'(x) or y' and f''(x) or y'' at x = 1.25 for the values of $y = x^{2/3}$ given in the following table:

x	1.0	1.5	2.0	2.5	3.0
$y = f(x) = x^{2/3}$	1	1.310	1.587	1.842	2.080

(c) Solve the following differential equation using Euler's method:

$$y' = 1 - 2$$
 xy, assume that $y(0) = 1$.

Find the solution in the interval [0, 0.8] with h = 0.2.